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Abstract-In a recent note "On Conservation Laws for Dissipative Systems", a new method of
constructing conservation laws applicable to dissipative systems was proposed. It is the purpose of
this present paper to explore how this new method, called the "Neutral Action Method", is related
to the concept of symmetry, and how it embodies the classical methods for obtaining conservation
laws of Noether and Bessel-Hagen which are applicable only to Lagrangian systems. Copyright
© 1996 Elsevier Science Ltd.

1. INTRODUCTION

Conservation laws, i.e. divergence-free forms, are of the utmost importance in many fields
of physics and mechanics. Mathematically, a conservation law of a physical system with
four independent variables x, y, z, and t, for example, is an equation of the form

(1)

where P = (pX, pY, P, pt) is a vector function that can depend on the independent variables,
the dependent variables and derivatives of the dependent variables of the system. Physically,
a conservation law states that the rate of change of pt inside any domain is equal to the net
flux of (P, pY, P) through the surface of the domain. Uses and implications of these
divergence-free forms are widely appreciated as in the case of the J, L, and M integrals of
fracture mechanics. A systematic approach for constructing conservation laws was by use
of the classical Noether's theorem (Noether, 1918). While providing a direct procedure for
obtaining divergence-free expressions, Noether's approach is applicable only to Lagrangian
systems, i.e., to systems possessing a Lagrangian function and governed by the Euler~

Lagrange equations obtained variationally. Bessel-Hagen (1921) extended Noether's work
by introducing the concept of divergence symmetries. Nonetheless, his generalization of
Noether's theorem also operated only in the realm of Lagrangian systems.

Recently, a brief note entitled "On Conservation Laws for Dissipative Systems" (Hon
ein et al., 1991) introduced a new method for constructing conservation laws. This newly
proposed method, subsequently referred to as the "Neutral Action (NA) Method", offers
a systematic procedure for obtaining conservation laws valid for both dissipative systems
(systems without a Lagrangian) as well as for Lagrangian systems. In fact, the NA method
allows one to construct systematically divergence-free expressions that are valid for any
system governed by a set of differential equations, regardless of whether they are Euler
Lagrange equations or not.

The purpose of this present paper is to establish how the NA method embodies the
classical methods of Noether, with extension by Bessel-Hagen, and how it is related to the
concept of symmetry.

As widely recognized, conservation laws are intimately related to symmetries. Within
the classical framework of Noether, there is a one-to-one correspondence between con
servation laws and symmetries (Olver, 1986). In this light, it can be expected that con
servation laws obtained via the NA method are also symmetry-related. Utilizing the concept
of a Gateaux derivative, directional derivative of a function or functional referred to by
Olver as the Frechet derivative, it will be shown that there exists an "adjoint" relation
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between the condition for existence of conservation laws via the NA method and the
condition for finding generalized symmetries of the governing equation of any system.

In addition to the relation between conservation laws derivable by the NA method
and symmetries, it will also be shown that this method is related to classical methods of
constructing conservation laws. If one transforms the condition for existence of a diver
gence-free expression, as required by Noether and Bessel-Hagen, into a slightly different
form, this condition can be shown to be mathematically equivalent to that of the NA
method when the governing equations are the Euler-Lagrange equations. Therefore, one
can conclude that the NA method not only allows one to obtain conservation laws for non
Lagrangian systems, but also yields identical results as Noether and Bessel-Hagen if applied
to Lagrangian systems.

In order to describe how the NA method is related to symmetries and to classical
methods of constructing conservation laws, concepts such as infinitesimal generator, pro
longations, symmetries, Gateaux derivatives, and Noether's theorem will be briefly intro
duced first. A thorough presentation of these concepts is available in Olver (1986) or
Biuman and Kumei (1989).

2. SYMMETRIES

Symmetry, by definition, is a map of the object into itself which leaves the object
invariant. The symmetry of an object is the set of all transformations leaving the object
invariant. In this paper, we are interested in two types of symmetries, namely, variational
symmetries and symmetries of the differential equations. In a variational symmetry, the
object which is left invariant is the action integral (integral of the Lagrangian density
function over material space). In symmetries of differential equations, the solution space
of the differential equations is left invariant. The symmetries ofa set ofdifferential equations
is the set of all transformations which transforms solutions of the system into other
solutions. These concepts will be illustrated in the sequel.

Symmetries can also be categorized as being geometric or generalized, depending on
the character of the transformation functions. Given a system of m independent variables
Xi (i = 1,2, ... , m) and n dependent variables Uk (k = 1,2, ... , n), we can subject this system
to an infinitesimal transformation

(2)

(3)

where e is an infinitesimal parameter.
If the transformation functions ~i and ¢k are functions of the independent and depen

dent variables only, the symmetries generated are called geometric or point symmetries. On
the other hand, if ~i and ¢k are also dependent on derivatives of the dependent variables,
we speak of generalized or Lie-Backlund symmetries. (It might also be relevant to note
that if the transformations are functions of the independent variables, the dependent
variables and first derivatives of the dependent variables, they are termed "contact sym
metries".) All references to symmetries that follow in this paper will implicitly refer to
generalized symmetries.

2.1. Infinitesimal transformations
If one applies an infinitesimal transformation as described by eqn (2) to a system with

m independent variables Xi and n dependent variables if, one must realize that derivatives
of the dependent variables in this system will also be transformed.

Using the multi-index notation introduced by Olver (1986), with J = (j[,j2"" ,jp) as
an unordered p-tuple of integers, 1 ~ j, ~ m indicating which derivatives are being taken,
#J = p indicating how many derivatives are being taken, a formula for all possible pth
order partial derivatives of if can be given as



by

with
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uPii'
Uk =------

J - axil OXi, ... OX~

Subjected to an infinitesimal transformation, J:, is transformed into uf,

:>0 k*
J',* = U" U

J - oxiT oxi~ ... oxi;'

au~
J:,i==~.,

, ax'
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(4)

and DJ == DhD}, ... Dip being a total differential operator ofpth order. Here Di, indicates a
total differentiation with respect to xi,.

Having established how derivatives transform, any functional f = f(x i
, uk, u~) can be

shown to transform into J'" = f(x i *, uk* , un by means of the relation

f --+ f* = f+epr(P)v(f),

where pr(P)v is the pth order prolongation given by

(P) . a k a J a
pr v = ¢'- +4> ~ +<I>k~' I ~ #J ~p,

ax' auk au~

(5)

(6)

and p L the highest order derivative of Uk appearing inf
Alternatively, pr(P)v can also be written in its evolutionary form (Olver, 1986, p. 297)

with

(P) k apr VQ=(DJ,Q)-, O~#Jf~p,
aJ:,.

where

2.2. Symmetries ofdifferential equations
For symmetries of a set of q differential equations

N(xi,uk,J:,) = 0, a = (l,2, ... ,q),

we seek a transformation such that

(7)

(8)

(9)
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From eqn (5), it follows immediately that the condition for symmetries of the set of
differential equations is simply

or in its evolutionary form

pr(P)v(tJ.") = 0, (10)

(II)

However, since tJ." must be set equal to zero along the solutions of the system, the
symmetry condition can also be written as

(12)

for all Uk satisfying tJ." = 0.
Therefore, in order to determine the symmetry group of tJ.", one only needs to solve

eqn (12) for the unknown functions Qk. In this sense, Qk can be regarded as the characteristic
functions for symmetries of differential equations.

2.3. Variational symmetries
As previously stated, a transformation group defines a variational symmetry of a

Lagrangian functional L(x i
, uk, un if the transformation leaves the action integral A

invariant for an arbitrary domain n. Mathematically, this condition is written as

A=l LdV=l L*dV*,
n n*

with d V and d V* being volume differentials in nand n*, respectively.
Byeqn (5),

L* = L+6pr(P)v(L),

and it is known that

dV* = JdV,

(13)

(14)

(15)

where J is the Jacobian of the transformation. Given the infinitesimal transformation, eqn
(2), the Jacobian is found to be

(16)

With eqn (14) and eqn (16), it follows immediately that the condition for finding
variational symmetries, eqn (13), can be stated as

or in its evolutionary form

pr(P)v(L) +LDi~i = 0, (17)

(18)
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3. CLASSICAL METHODS FOR ESTABLISHING CONSERVATION LAWS

3.1. Noether's first theorem
Noether's first theorem provides the classical procedure for obtaining conservation

laws for Lagrangian systems. Given a Lagrangian function L, Noether asserted that if the
action integral remains invariant under a set of infinitesimal transformations of both the
dependent and independent variables, then a divergence-free expression exists in the space
of the independent variables. Noether's requirement for existence of conservation laws is
identical to that for variational symmetries of the Lagrangian function L.

In short, Noether requires that

(19)

Using eqn (8) and after some manipulations (Olver, 1986, p. 278), the above can be
rewritten as

(20)

where

k aL
E(L)=(-DL-, O,,:;,#J,,:;,p,

at/5
(-D)J = Dj, for#J = even,

(-D)J = -Dj, for#J = odd,

and Ai is some known function of Land Qk.
Noether's conditions for existence of conservation laws, eqn (19), can now be stated

as

(21)

Upon closer inspection, the term Ek(L) is the Euler operator operating on L, i.e.,
Ek(L) = 0 yields the Euler-Lagrange equations that govern the system. Therefore, if the
condition of eqn (19) holds for some infinitesimal transformations, then we can always
construct conservation laws in the form

(22)

Since the condition for existence of conservation laws, as required by Noether, is
identical to that of variational symmetries, every transformation group that yields a vari
ational symmetry of the Lagrangian will also provide the associated conservation law for
the system, and vice versa. This indicates the one-to-one correspondence of conservation
laws and symmetries within the framework of Noether.

3.2. Bessel-Hagen's extension
Bessel-Hagen (1921) extended Noether's theorem by inclusion of the so-called diver

gence symmetries. Instead of the requirement of Noether, eqn (19), he requires that

(23)

where B' is a set of arbitrary functions.
Following developments similar to those for Noether's first theorem, Bessel-Hagen's

condition can be stated as
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(24)

and the corresponding conservation law reads

(25)

4. THE NEUTRAL ACTION (NA) METHOD

Having introduced all the background material on symmetries and classical methods
for constructing conservation laws, we are now ready to explore how the NA method
proposed in the brief note "On Conservation Laws for Dissipative Systems" (Honein et
al., 1991) relates to these concepts.

4.1. Conservation laws
Given a system of q differential equations,

(26)

the NA method states that it is possible to construct conservation laws valid for the system
governed by this set of differential equations in the form

(27)

if

(28)

where E! is the Euler operator, and r = r(xi
, Uk,~) are called the characteristics of

conservation laws.
Since our objective is to construct some divergence-free expressions out off'N, and

since the Euler operator acting on any total divergence always gives a null result by calculus
of variations, it follows that we should require the product r~' to be a null Lagrangian.
Equation (28) implies thatr~' is a null Lagrangian, i.e., it requires that the action integral
off'~',

(29)

has zero variation, bA = O. In other words, for existence of conservation laws, we try to
construct a product ofr~'whose action integral has vanishing variation for any dependent
variable if. Hence the name "Neutral Action" method given to this procedure.

In practice, given any set of differential equations, one only needs to solve eqn (28) for
the unknown characteristics f', and then proceed to construct the conserved currents pi

valid for the system governed by this set of differential equations. Examples on application
of this method have been given in Honein et al. (1991).

4.2. Relation to symmetries
In order to show how the proposed method is related to the concept of symmetry, the

idea of a Gateaux derivative will be useful.
A Gateaux derivative of a differential functional is the directional derivative of that

functional in jet-bundle space (the space of the independent variables, the dependent
variables, and the derivatives of the dependent variables). Details on this subject can be
found in Olver (1986).

In short, the Gateaux derivative, Dp(Q), of a set of q differential functionals P[u],
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P[u] = P"(Xi
, uk, 0), IX = (1,2, ... , q),
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(30)

in the direction of another set of n (n being the number of dependent variables) differential
functionals Q[u],

Q[ - P j k k f3-u]- Q (x,u ,uj ), - (1,2, . .. ,n),

is defined by its differential operator, D p , such that

It can be shown that the Gateaux derivative can also be written as

with the differential operator being

(31)

(32)

(33)

(34)

To define a (formal) adjoint differential operator for the Gateaux derivative, D;, this
adjoint operator must satisfy

In F'Dp(Q)dx = In Q'D:(F)dx, (35)

where F is any set of q differential functionals. The adjoint Gateaux derivative D:(F) is
found to be

[
8P" ]D;(F) = (D:)p"F" = (-D)j -F", 0,::; #J'::;p,
8u~

and the adjoint operator is given by

(36)

(37)

For any system governed by a set of differential equations, ~' = 0, the necessary and
sufficient condition for existence ofconservation laws is given by eqn (28), which must hold
for all if. This condition can be written explicitly as

8f" 8~'
(-D)j~"- +(-D)d"- = 0,

8u~ 8u~

and in terms of Gateaux derivatives

D;(A) +D!(f) = o.

(38)

(39)

In Section 2.2, it is shown that for symmetries of a set of differential equations (in this
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case, the governing equations of the system of interest), the characteristics of symmetries
Qk must satisfy eqn (12),

o~ #J~p, (40)

for all Uk satisfying 11" = O. In terms of the Gateaux derivative, this condition on Qk can be
written as

(41)

Since the condition for symmetries of differential equations, eqn (41), exists only in
the space of the solutions; and since we are interested in obtaining divergence-free
expressions that are valid along the solutions of the system 11" = 0, a connection might exist
between conservation laws via the NA method and symmetries of the governing differential
equations in the solution space.

In the solution space, where 11" = 0, the term D:t.!1) appearing in eqn (39) is identically
equal to zero. The condition for existence of conservation laws thus reduces to

D1(t) = 0, (42)

which must hold for all Uk satisfying 11' = O.
Upon inspection of eqn (42) and eqn (41), with!" being the characteristics of con

servation laws, and Qk being the characteristics of symmetries of the governing equations,
it is apparent that the condition for existence of conservation laws and the condition for
finding symmetries of the governing differential equations are adjoint to each other in the
solution space. In other words, if we restrict ourselves to the solution space, there is a one
to-one correspondence between the set of all!" that satisfies the condition for existence of
conservation laws and the set of all Qk that characterizes symmetries of the governing
equations. This establishes the connection between conservation laws via the NA method
and the symmetries of the governing equations for any system of interest.

4.3. Relation to classical methods
Classical methods ofconstructing conservation laws as discussed in Section 3 are based

on concepts of variational symmetry. On the surface, there seems to be no relation between
the NA method and the classical methods. However, it has been noted in Olver (1986) that
for Lagrangian systems, there is a correspondence between conservation laws and the
symmetries of the governing differential equations similar to that discussed for conservation
laws derived via the NA method. Olver noted that the Gateaux derivative for any Euler~

Lagrange equation is a self-adjoint operator. Thus, for Lagrangian systems governed by
such equations, there is a direct correspondence between conservation laws and symmetries
of the governing equations in the solution space. Since both classical methods and the NA
method can be shown to be related to symmetries of the governing equations, it is expected
that these two methods should themselves be related. It is the purpose of this sub-section
to show directly how the NA method relates to classical methods ofconstructing divergence
free expressions valid for Lagrangian systems.

As discussed in Section 3, for existence of conservation laws, both classical methods
of Noether and Bessel-Hagen require that

(43)

with
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pi = Ai +L~i, for Noether (eqn 21),

pi = Aj+L~j-B\ for Bessel-Hagen (eqn 24),
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(44)

(45)

where Q\ in the present context, can be regarded as the characteristics of conservation
laws.

Since the Euler operator acting on any total divergence will always yield a null result,
eqn (43) can also be written as

(46)

or explicitly

(47)

and in terms of the Gateaux derivative

(48)

which is a differential equation for the characteristics Qk. Equation (48) is also the necessary
and sufficient condition for generating conservation laws within the framework of Noether
and Bessel-Hagen.

On comparison of the necessary and sufficient condition for generating conservation
laws, eqn (48) for classical methods and eqn (39) for the NA method, it is obvious that
these equations take the same form, with A = E(L) for Lagrangian systems and Q = f
being the characteristics of conservation laws.

Therefore, for Lagrangian systems, the requirement for existence of conservation laws
by the NA method is mathematically equivalent to that of Noether and Bessel-Hagen. All
conservation laws obtainable via the classical methods can also be obtained by the NA
method. In short, the NA method not only extends systematic construction ofconservation
laws to non-Lagrangian systems, it also encompasses classical results of Noether and Bessel
Hagen for systems governed by Euler-Lagrange equations.

5. CONCLUSIONS

In this paper, it has been shown that the Neutral Action (NA) Method of constructing
conservation laws as proposed by Honein et al. (1991) is related to the concept of symmetry.
This new method is also shown to embody classical methods of obtaining divergence-free
expressions based on Noether and Bessel-Hagen.

For any system governed by a set of differential equations, the condition for obtaining
conservation laws is expressible in terms of Gateaux derivatives. In the solution space for
the system, this condition of existence, as imposed by the NA method, is adjoint to the
condition for symmetries of the governing differential equations. In the space of solutions,
characteristics of conservation laws by the NA method are adjointly related to the charac
teristics of the symmetry for the governing equations of the system of interest. This reveals
the connection between conservation laws and symmetries in the present context.

It is also shown in this paper that the NA method of constructing conservation
laws is related to the classical methods of Noether and Bessel-Hagen. The condition for
construction of a divergence-free expression as imposed by Noether and Bessel-Hagen can
be transformed into such a form that it is identical to the necessary and sufficient condition as
required by the NA method. Therefore, for Lagrangian systems governed by the associated
Euler-Lagrange equations, the classical method and the NA method of constructing con
servation laws will yield identical results. The NA method not only extends systematic
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construction of conservation laws beyond Lagrangian systems, it also encompasses the
classical procedures of Noether and Bessel-Hagen.
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